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ABSTRACT

A new approach to GMTI data exploitation for large area persistent surveillance is presented.
Instead of traditional target tracking, this approach utilizes GMTI data as moving spots on the ground to
estimate the level of activities and detect unusual activities such as military deployments.

A multilayer hierarchical exploitation scheme is proposed. This computational framework has clean
mterfaces between layers consisting of multiple processing modules. Various data processing, machine
learning, and reasoning algorithms can be implemented in these modules. This system 1s easily extendable
and can be tested using a generalized test bed.

The development of two processing modules, vehicular volume and convoy detector, 1s described.
For the vchicular volume module, US highway data were used as a surrogate of long-term GMTI
surveillance data. The relationship between the activity level of Norfolk Naval Base and the traffic pattern
on a road leading to the Base is studied. The convoy detection module, developed using real GMTI data.
contains an algorithm that detects convoys without explicit target tracking.

An end-to-end testing facility was also developed. Using this test bed, the system can be tested at
different levels: as an individual processing module, as multiple cooperating processing modules across
layers, or as the entire system.
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1. INTRODUCTION

The Space-Based Radar (SBR) system aims to provide persistent surveillance at a global scale. The
two principal operational modes of the system are the Synthetic Aperture Radar (SAR) and the Ground
Moving Target Indicator (GMTI). While SAR provides information on nonmoving ground scatterers,
GMTI data contains information on moving targets. Due to the large flow of data that will be generated
by the SBR sensors, the automatic exploitation of the sensor data is a key component of the SBR system.

This report presents work in progress in the area of SBR GMTI data exploitation. Since tracking at
a global scale is prohibitively expensive for SBR GMTI sensors, we explore methods that can extract
beneficial information from the uncorrelated GMTI data. One approach is to model the behavior of the
GMTI “spots™ under normal circumstances to detect unusual activities such as military deployments. By
this approach, we view the SBR GMTI exploitation as a pattern recognition, machine learning, and data

mining problem.

We propose here a multilayer hierarchical exploitation scheme that has clean interfaces between
layers and can be easily c¢xtended. Each layer contains multiple processing modules, and all of the
modules in the system have a similar functional structure in terms of data analysis, pattern modeling, and
anomaly detection. This system can be viewed as a computational framework for multisensor persistent

surveillance.

This report describes the development of two processing modules for the proposed system:
vehicular volume and convoy detector. Within the framework of activity level anomaly detection, both
modules generate low-level computational features. Since GMTI surveillance data over a prolonged
period of time 1s not readily available, traffic data collected in Virginia Hampton Roads area are used as a
surrogate data source for the development of the vehicular volume feature. The relationship between the
activity level of Norfolk Naval Base and the traftic pattern on a road leading to the Base is studied in
detail. Convoys are important indicators of military movements. To capture this information, an algorithm
for detecting convoys in GMTI data without explicit target tracking is also developed.

An cnd-to-end testing facility has also been developed in this work. The proposed computational
(ramework has the ability to incorporate many processing modules that are specialized in exploiting
different aspects of sensor data. These modules can be implemented using a variety of data processing
and pattern analysis techniques. When building such a system, a test environment for testing and
cvaluating the processing modules is highly desirable. This flexible test bed is developed to facilitate the
system development at various levels, should it be an individual module or a set of cooperating modules.

In the following section, the proposed framework for multisensor persistent surveillance is
presented. [n Section 3, the Norfolk traffic study is used as an example to explain the inner working of the
framework. Section 4 explains the convoy detection algorithm. The test bed for system testing and
evaluation 1s presented in Section 5.



2. A FRAMEWORK FOR MULTISENSOR PERSISTENT SURVEILLANCE

The data processing and reasoning scheme developed in this work for activity change detection can
be considered generally as a framework for multisensor large-area persistent surveillance. This
framework has a multilevel bottom-up hierarchy, where the sensor data are at the lowest level. The entire
system consists of highly modular components that can be extended easily to accommodate new sensor
inputs and new processing and reasoning schemes.

To help explain this system design, we first take a look at how human analysts would conduct a
situational analysis on an example surveillance scenario. The setting of the scenario 1s the Taiwan Strait.
The question to address is whether or not Mainland China is preparing an imminent attack on Taiwan. To
answer Lhis question from a surveillance point of view, we consider how the military activity level in that
area would change if the preparation for the attack is in motion.

Figure | shows a possible military preparation tumeline starting from six months prior to the final
attack. Potential changes in site activities are listed by military branches. We are particularly interested in
the changes that occur three to six months ahead of the attack. Around that timeframe, some early site-
level activity changes may be present. For instance, increased ship and pier retrofit activities at navy
shipyards and ports: increased activity level at army garrisons, live-fire ground weapon ranges, and
marshaling yards; as well as increased activities at Air Force main operating bases (MOBs) and live-fire
alr weapon ranges.

l.et us use the Army marshaling yards as an example to continue the analysis. To decide if the
aclivity level m a marshaling yard is unusual, the vehicular volume, number of train cars, train speed,
number of convoys, etc., can be monitored. Since the information on these items can be obtained readily
from the sensor data, they are regarded as low-level observables. These observables form the foundation
of our analysis.

Figure 2 structures the analysis of the Taiwan scenario into a multilevel situational analysis
flowchart. To answer the ultimate question at the top level, we monitor the activities at various mid-level
sites. To determine the level of activity at a particular site, we keep tracking relevant low-level
observables. In essence, this flowchart is built from the top down by a knowledge-driven analysis process.
The result 1s a multilevel hierarchical system. Using this system to determine if China is preparing an
attack on Taiwan, the analysts would first gather information from the low-level observables to reach
conclusions at particular sites and then use the results from various sites to assess the situation of the

entire region.
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As mentioned previously, sensor data can provide information on low-level observables. To build a
compulational system that uses sensor data as inputs, we reverse the analysis process in Figure 2. The
result 1s a data-driven bottom-up hierarchy, shown in Figure 3. At the entry level, features are extracted
from sensor data to support the low-level inference. The results are then sent to the next level up to
ascertain the state of site activities. Finally, the results from all relevant sites are used to reach a regional
conclusion.
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Figure 3. Compitational framework for persistent surveillance using multisensor data, illustrated using Taivwan

NCCHArio.

The basic elements of this computational system are its processing modules. At the core ol these
modules are statistical models and learning schemes that are used to evaluate incoming data for their
normalcy. Different algorithms can be implemented in the modules. A simple module, typically a low-
level one, can contain a straightforward statistical model such as the Gaussian model. A more
sophisticated module can be a rule-based cxpert system, a pattern rccognition algorithm, a machine-
learning scheme, or a hybrid system.

Although the computational models implemented in the processing modules may take many
different forms, the design of the modules can share a common functional structure. lllustrated in Figure
4, a module first extracts appropriate computational features from the input data. Whenever necessary, the
fealures are refined. The feature values are used to build or update the computational model in the
module. Finally, the feature values are evaluated against the existing model to determine whether they are
normal or not. The common structure of the modules facilitates system testing and extension.
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Figure 4. Functional structure of a processing module.

This multilevel hierarchical computational framework emphasizes evidence accumulation and
continuous learning. Valuable information, including model parameters, intermediate results, and
previous conclusions and observations, are stored in the database. At every level of reasoning, human
expertise and intervention are an integrated part of the system. It can be easily extended to accept new
inputs, generate new features, monitor additional sites. and ultimately provide more surveillance
coverage.

In the next two sections, we use highway traffic volume and convoy detection as examples to
explain how entry-level feature modules can be built and used to provide information for higher-level
inference.



3. NORFOLK TRAFFIC STUDY

To study the activity patterns in a region, we need a data set that spans over a long period of time.
Since a suitable GMTI data set is not available to us, we used US highway tratfic data as a surrogate. The
goal 1s to explore how certain attributes of the traffic data can be used to monitor the activity level in a
geographic area. In this section, the construction of a processing module designed to utilize the vehicular
volume as a low-level feature is explained step by step.

3.1 NORFOLK TRAFFIC DATA

Data used in this study were downloaded from the Archived Data Management System for Virginia
(ADMS Virginia). This traffic database 1s sponsored by the Federal Highway Administration and Virginia
Department of Transportation. It is currently managed by the Smart Travel Lab of the University of
Virginia. Traffic data are collected using embedded magnetic loop sensors located throughout the
Virginia Hampton Roads area, shown in the left-hand image of Figure 5. Vehicular speed, volume, and
occupancy data are collected every 20 seconds and then aggregated and recorded every minute. Due to
high failure rates of the sensors, data screening is essential.

)
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Figure 5. Hampton Roads area. I-564 leads to Norfolk Naval Buse.



[n addition to the traffic data, ground truth of regional activity level is necessary for algorithm
development and testing. The truth data, however, is not available in the ADMS Virginia database. This
issue was resolved by inferring the truth from the ship arrival and departure activities at Norfolk Naval
Base. The right-hand image of Figure 5 shows the road details of the Norfolk area. The major highway
that leads to the Naval Base is Route 1-564. As expected, major Base activities tend to have a significant
impact on the traffic pattern of the nearby highways, including [-564.

In this study, the regular weekday traffic 1s considered as the “normal™ activity, and the traffic
during the ship arrival and departure days are regarded as “‘anomalies.” Initially, data collected at Station
131 on [-564 westbound (WB) was used as the main data source. The vehicular volume at this station was
studied extensively and used as a feature-level indicator to Base activities. Later. data collected at 1-564
eastbound (EB) Station 135 are processed to study traffic patterns across months, seasons, and years.

At the beginning of the study, the truth data was obtained from the newspaper webpage
http://www.hamptonroads.com/military/homecomings. (This truth data was later confirmed by a ship
arrival and departure list obtained from the Norfolk Naval Base.) The available truth data limited the time
span of the traffic data used in the study to about three months. We screened the weekday vehicular
volume and speed data collected between April 7 and July 3, 2003 at Station 131 and found 41 days of
usable data. Among the 41 days. ten are considered abnormal. This 41-day data set constitutes the nitial
Norfolk traftic data set.

3.2 PROCESSING MODULE FLOWCHART

The computational flowchart for the traffic volume analysis module is shown in Figure 6, where the
“Feature Refinement™ step is specified as a gating function. Each step of the processing is explained in
detail in the following subsections.
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1 1
Feature
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Figure 6. Traffic data processing module flowchart.

3.3 FEATURE EXTRACTION

The typical first step of a module is to preprocess the incoming data and extract features that are
relevant to the subsequent processing. For Norfolk traffic data analysis, the data screening mentioned



previously can be considered as preprocessing. The screened per-minute data typically contain some high
frequency fluctuations that can be regarded as noise. To reduce the fluctuation, we filtered data at every
five-minute mark using a moving average window that averages the data over the past ten minutes. For
each 24-hour period starting at 00:10 hour, this process results in 287 data points, which are used as
computational features in the subsequent processing.

Can the vehicular volume and speed features indicate the level of Base activities? To answer the
question, the means and standard deviations of these features are first computed at each five-minute mark
over the 31 normal and 10 abnormal days, respectively. The results are shown in Figures 7 and 8. The
solid lines 1n the figures represent the mean values, and the boundaries of the shaded areas correspond to
the standard deviations. Since 1-564 WB is inbound to Norfolk Naval Base, the traffic volume peaks in
the morning as expected.

To be able to distinguish the abnormal traffic pattern from the normal ones, we would like to see
good separations between the normal and abnormal curves in the two figures. Taking into account the
variances ol the data, the best separation appears to be in the vehicular volume, during the morning
period. This tells us that, to use vehicular volume and speed as computational features lor anomaly
detection, we need to refine the features to specify the time intervals in a day when the features are the
most discrimunative. This refinement is represented by the gating function w(t) in Figure 6.
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Figure 7 Means and standard deviations of vehicular volume. Shown are mean (solid blue) and standard deviation
(shaded blue) of 31 normal davs as well as mean (solid red) and standard deviation (shaded red) of 10 abnormal

davs.
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3.4 FEATURE REFINEMENT

For the vehicular volume and speed data, the separations between the normal and the abnormal data
sets are quantified by using the Student’s ¢-test. The Student’s f-test determines whether two sets of
samples are drawn from the same statistical distribution. Therefore, it is a test between the two
hypotheses: Hy: two sample sets are from the same distribution; and H,: two sample sets are from
different distributions. The sample sets used in our tests are populated by the vehicular volume or speed
data from the “normal™ and the “abnormal™ days. Figures 9 and 10 show the results of the Student’s r-
tests. The “significance™ values in the figures are the probabilities that the two sample sets are from the
same distribution. The tests were conducted at level 0.05, which means that a 5% threshold for the
significance values was used to choosc between the two hypotheses. In the two figures, Hy and Hy are
marked in red with value 0 and [, respectively.

The Student’s f-test results show that the normal day and the abnormal day vehicular volume data
have the best separations in the early part of a day, between 0830 and 1230 hours. In Figure |1, this time
interval is superimposed onto the vehicular volume mean and standard deviation data shown in Figure 7.
The Student’s r-tests also show that the speed data do not have consistent separations. Therefore, this
particular vehicular speed data set is not a strong indicator for the Norfolk Naval Base activities. In the
following analysis, we will focus on only the volume data.
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Figure 9. Student's t-test between normal and abnormal day vehicular volume data at level 0.05.
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Figure 10. Student’s t-test between normal and abnormal day vehicular speed data at level (.03,
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Figure 11, Time interval with the best separation between normal and abnormal day vehicular volume data.

3.5 FEATURE MODELING

Computational models are at the core of all processing modules. These models capture the behavior
of the input features under normal circumstances. During operation, the incoming feature values are
evaluated against the models to detect an anomaly.

For the vehicular volume feature, we assumed Gaussian models for data points collected at the
same five-minute mark across all “normal™ days. This assumption is illustrated in Figure 12. One way to
verify the Gaussian assumption is to visually examine the histograms of the normal day vehicular volume
data. Based on the results of the feature refinement, we narrowed our focus to the time interval between
0900 and 1100 hours for modeling. Histograms of vehicular volume are generated at every five-minute
mark for the two-hour period. The results are plotted in the four pictures of Figure 13. Each picture
contains six separate curves. These histograms indicate that Gaussian distribution i1s an appropriate
assumption for the volume data. The Gaussian model parameters are estimated from the data as the
statistical sample means and standard deviations.



{"uiw Jad s3|21YaA Jo Jaquinu) 3WN|OA

2400

2100

1500

Hour of Day

0700

Figure 12, Vehicular volume is assumed to have a Gaussian distribution.

13



) 0930-1000
0900-0930 fi

Number of Days
e

Number of Days

1 Ty 14 Al
Vehicle Volume Vehicle Volume

1000-1030 1030-1100

Number of Days
M
Number of Days
=

A 0 ¥ ."I A
0 5 0 1

Vehicle Volume Vehicle Volume

Figure 13. Histograms of normal dayv vehicular volume data between 0900 and 1100 hours. Each picture contains

six curves. Each curve corresponds to a five-minute marh.

3.6 FEATURE EVALUATION

The last processing step in a module is to evaluate the incoming feature values against the models
established for the “normal™ activity patterns. The results help to determine if an anomalous situation is

present.

For the vehicular volume feature, the evaluation is conducted at every five-minute mark between
0900 and 1100 hours. The models for the volume data are one-dimensional Gaussians and the anomalies
are expected to increase the traffic volume. Therefore, a single-valued decision boundary is used to decide
if a volume data value is within the “normal™ range. At each five-minute mark, all 41 available data
values (31 from normal days and 10 from abnormal days) are used in testing. The probabilities of
detection (Pp) and false alarm (Py) are calculated by comparing the test outcome against the truth data.
By varying the value of the decision boundary, a set of Pp’s and Py pairs are generated and then plotted as
Receiver Operating Characteristics (ROC) curves. In this work, the probabilities are first calculated by
aggregating the test results in four 30-minute intervals. The resulting ROC curves are shown in Figure 14,
Then the results from the entire two-hour time interval are aggregated to generate the ROC curve in
Figure 15.
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Note that, in this experiment, the same sel of “normal’ day data was used for both model generation
and testing. A more sophisticated test method, such as “leave-one-out,” can be used instead. Nevertheless,
since the statistical distribution of the normal day data is close to Gaussian, a significant difference in the
test results due to the Gaussian assumption is unlikely.

An effective and efficient system should operate at locations close to the upper left corner of the
ROC plot, i.e., operating with high probability of detection and low probability of false alarm. As shown
by the red lines in Figure 15, the performance of the vehicular volume feature is rather poor: to detect
90% of all anomalies, 9 out of 20 detections would be false. In the next subsection, this performance issue
ts examined in detail.

3.7 IMPACT OF SHIP SIZES

In the process of identifying the main contributors to system performance, we noticed that some of
the days had large ships departing or arriving while the others had much smaller ones. Table | contains
the list of anomalous days provided by the Norfolk Naval Base and the potential numbers of personnel
onboard the ships. Presumably, large ships would have more substantial impact on the traffic pattern near
the Base than the small ships would.

10



TABLE 1
Truth Data For Small and Large Ship Arrival and Departure:
Six Small Ship Days and Eight Large Ship Days

Date Ship Type and Name A/D Crew Troops
06/11/03 Destroyer Arleigh Burke Arrival 337
06/13/03 Command — Mount Whitney Arrival 970
3 06/25/03 Amphibious Assault Ship Bataan Arrival 1,082
e Amphibious Transport Dock Ponce Arrival 364
(2 Dock Landing Ship Ashland Arrival 320
© Dock Landing Ship Gunston Hall Arrival 320
(IE) 06/26/03 Amphibious Assault Ship Saipan Arrival 1,067
06/27/03 Amphibious Assault Ship Saipan Arrival 930
07/03/03 Crouser Anzio Arrival 387
Destroyer Porter Arrival 387
09/22/99 Aircraft Carrier USS Roosevelt Arrival 6,122 3,061
‘8_ 02/18/00 Aircraft Carrier USS Dwight Eisenhower Departure 6,130 3,065
;-’C_) 05/22/00 | Aircraft Carrier USS Harry Truman Departure 6,122 3,061
® 06/21/00 Aircraft Carrier USS George Washington Departure 6,122 3,061
g 12/20/02 Aircraft Carrier USS George Washington Arrival 6,122 3,061
— 05/23/02 Aircraft Carrier USS Harry Truman Arrival 6,122 3,061
05/29/03 Aircraft Carrier USS Roosevelt Arrival 6,122 3,061
05/30/03 Aircraft Carrier USS Roosevelt Arrival 6,122 3,061

Figure 16 shows the means and standard deviations of traffic volume at 1100 hours during normal,
small ship, and large ship days. The overlaps between the normal and the small ship days and between the
small and the large ship days are significant. Figure |7 displays the mean of traffic volume in normal days
as well as the one-standard-deviation boundaries of the traffic volume in the small and the large ship days.
Clearly, the increases of the tratfic volume in the small and the large ship days are quite different.
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To quantify the difference and its effect on system performance, we conducted Student’s f-tests,
reevaluated the vehicular volume feature, and generated the corresponding ROC plots. The results are
shown in Figures 18 through 21.

Figures 18 and 19 show the Student’s /-test result and the ROC curve generated using the vehicular
volume data from the normal and the small ship days. In this case, the system performance is similar to
that in the small and large ship mixed case displayed in Figure 15. In the case of using the normal and the
large ship days, shown in Figures 20 and 21, significant improvements are seen for both the shape of the
ROC curve and the length of the time interval when the vehicular volume feature remains effective.

By the results shown above, the vehicular volume feature appears to be more effective for detecting
the large ship days than the small ship days. This, however, does not mean that the vehicular volume
feature is unusable for detecting the small ship days. In fact, an important strength of the proposed
computational framework is its potential capability to utilize information provided by multiple imperfect
teatures to produce high quality inference results.
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Figure 18, Vehicular volume means (top) and Student's t-test results (bottom) for 31 normal and 6 small ship days.
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3.8 ANALYSIS OF I-504 EB VEHICULAR VOLUME DATA

The vehicular volume data used in the analysis thus far are solely from one collection station on I-
564 1n the westbound direction. To investigate the consistency of the vehicular volume feature in terms of
its correlation to the naval base activity level, data collected at 1-564 eastbound Station 135 are also
analyzed in this study. This data set consists of 31 normal days and 3 abnormal days. The reduction on the
number of abnorimal days from the original ten is due to the poor quality of the Station 135 data on the
days removed. The analysis procedure used to process the data is the same as the one presented earlier in
this section.

The mean vehicular volume of the normal and the abnormal days are plotted in Figure 22. Since
[-564 EB 1s outbound from the naval base, the traffic volume peaks during the afternoon instead of in the
morning as the westbound traftic does. Figure 23 shows the system performance ROC curve using results
aggregated between 1330 and 1500 hours. This ROC curve is similar to the one shown in Figure 15.
Theretore, although the traffic pattern throughout a day is quite different between the eastbound and the
westbound data, the vehicular volume feature is consistent in its ability to indicate the activity level at the

naval base.

The corresponding vehicular speed data from Station 135 contain mostly failed sensor readings that
are not suitable for analysis.
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Figure 22. 1-564 EB vehicular volume means (top) and Student's t-test results (hottom) for 31 normal and 3

abnormal days.

Mean Volume (vehicle/min.)

Significance

1]
(=1

S
o

N
(=]

o

0.8

0.6

04f

0.2

. , 'c HI.I SR
I .?l t:'ﬁ!ll —— Abnormal |
T T =
w { ‘M }I‘ \““M | ‘\ [ ] ”]‘( ‘rl 8]?{1? M T
J’ ‘Il t M H ‘M |‘ ‘ll |1 | Mﬂ HHH H
WL T T
’ : 10HourofDay1l5 20

09+
0.8}
0.7 + -
06 |
0.5
0.4

03

0.1+

1330-1500 ~

0 L 1 I 1 ) I 1 L

0.2 03 04 05

F

0.6 O

7 08

(2 1

Figure 23, 1-564 EB vehicular volume 1.5-hour aggregation ROC

22



Notice that the peak traffic volume in either direction of 1-564 does not present a dramatic change
during the ship arrival and departure days. Also, the traffic volume peaks around the same time as the
regular rush hours. This is because the release of the military personal from the ships is typically
scheduled in the mornings. Since the access road to the Base is gated, it is typically saturated during the
peak tratfic hours.

3.9 MODEL UPDATE

In Sections 3.5 and 3.6, we discussed how to build a computational model for the vehicular volume
feature and how to use the model to evaluate incoming feature values for anomaly detection. Two
questions remain: 1) how many different models should a system maintain for this feature; and 2) how
frequently should the models be updated? One answer to the first question is that the traffic patterns for
weekdays, weekends, and holidays are quite different, and hence separate models are required. A study is
now being conducted to answer this question more systematically. In this subsection, we present the
analysis results that address the second question.

The data set used in the “model update™ analysis consists of weekday vehicular volume data
collected from [-564 eastbound Station 135 in years 1999, 2000, 2001, and 2003. (Data from 2002 is
incomplete in the ADMS Database.) Known “abnormal™ days are excluded. The same screening and
smoothing procedures as described in Section 3.3 are used to preprocess the data. For each 24-hour
period, this process generates 287 traffic volume values at five-minute marks starting at 00: 10 hours.

A series of Student’s /-tests are performed to measure the similarity between two monthly vehicular
volume data sets. At each five-minute mark, a r-test is conducted at 5% significance level. The two test
sample sets are compiled respectively from the two monthly data sets. Each sample set contains all the
vehicular volume data corresponding to the current five-minute mark. The degree of similarity between
the two months is measured as the percentage of the 287 /-test results that fail to reject the null hypothesis
Hy. In other words, this similarity measure is the percentage of the 24-hour period when the vehicular
volume data from the two samples are statistically similar.

Figure 24 shows the similarity of the vehicular volume pattern between the same months of two
adjacent years. Figure 25 shows the similarity between all pairs of adjacent months. By these two figures,
it appears that the year-to-year changes in vehicular volume pattern are slightly larger than the month-to-
month changes.

To better understand how the monthly vehicular volume pattern changes over the years, Student’s t-
tests, similar to the ones described above, are performed on pairs of months separated from one to thirty-
stx months. The degree of similarity 1s again measured by the percentage of time in a day when the #tests
tail 1o reject the null hypothesis. The results are averaged for each separation interval and then plotted in
Figure 26. Apparently, for any particular month, the two most recent months have the most similar traffic
volume patterns, followed by the 12" and the 13™ months. The similarity also peaks. although less
significantly, at the 24" month. The cyclic pattern in the figure reflects seasonal changes in the vehicular
volume data.
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Figure 26. Averaged vehicular volume similarity between two months separated from 1 to 36 months.

The comparison of the monthly vehicular volume data is also conducted using a dissimilarity
measure. The dissimilarity of the vehicular volume between two months is computed as
X e = g
D= 1 (x,—¥)
=—) =t
N o] O'\Y 4 O'\v

where X, and ¥, are the monthly means at the i" five-minute mark, o * and 0‘.2 are the corresponding
variances, and N = 287 is the number of five-minute marks in a 24-hour period. When the vehicular
volume at each five-minute mark is Gaussian distributed, the difference measure D has a chi-square
distribution. The results of ( -D) shifted by a constant is averaged for each separation interval and plotted
in Figure 27. The scale of the ordinate in the plot is arbitrary.
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Figure 27 Monthly vehicular volume similarity comparison using a chi-square dissimilarity: measure. The two

months compared ave sepurated from | to 36 months.

The results in Figures 26 and 27 correspond quite well. Therefore, for the Norfolk traffic data, it 1s
appropriate to update the models for the vehicular volume feature once every other month using the past
data. The models for the same month in the past year can also be used as a strong reference.
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4. CONVOY DETECTION USING GMTI DATA

In the last section, the functional components of a processing module are explained in detail using
the development of the highway vehicular volume feature as an example. As illustrated in Figure 3, the
vehicular volume feature is one of the low-level modules in the system. Other modules can be built
similarly with the same functional structure shown in Figure 4. For instance, one of the features depicted
m Figure 3 is the “Number of Convoys.” Before being counted, however, the convoys need to be
distinguished from the rest of the traffic mix. The goal of this section is to construct a module that detects
convoys in GMTI data.

This convoy detection algorithm involves first finding groups of detections that are likely to be
convoys, then correlating those groups over time, from one GMTI scan to the next. In this manner, the
evidence ol convoys s accumulated to dismiss false convoys and ultimately to identify the persistent true
convoys by applying a threshold to the evidence.

Typically, a GMTI data set consists of information on targets detected in a series of scans over a
geographic arca. Among other quantities, the data set contains the target position, speed, and the
corresponding data quality measures. The scans in a data set, however, may not have been taken close
enough in time so that individual vehicles can be tracked easily from one scan to the next. Therefore, the
proposed convoy detection algorithim involves first finding groups of detections that are likely to be
convoys, then correlating those groups over time, from scan to scan. In this manner, the evidence of a
convoy is accumulated to identify the persistent true convoys and dismiss the inconsistent false ones.

The flowchart ol this convoy detection algorithm is shown in Figure 28. Convoy candidates are first
identified in each scan as qualified clusters of GMTI detections. Each candidate cluster is assigned a
persistence score, which is increased every time its predicted position in the next new scan has a close
match to the position of one of the convoy candidates found in the new scan. The predicted position of a
candidate in the next scan is calculated by establishing a motion model for each candidate. When its
persistence score is high enough, a candidate is declared a convoy.

Due to the classification of the GMTI data, graphical drawings are used instead of real data in the
following to explain the convoy detection algorithm.
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Figure 28. Flowchart of convoy detection algorithm for GMTI data.

4.1 IDENTIFY CONVOY CANDIDATES IN A SCAN

The procedure for identifying convoy candidates in GMTI data 1s essentially a clustering scheme.
There are three steps in the process, which are depicted in Figure 29.

The first picture in Figure 29 shows the road segments and the GMT] detections in a fictitious scan.
Since isolated detections are unlikely to be part of a convoy, the first step of the processing is to remove
them. The result 1s shown in the second picture. In the next step, clusters are found using a k-means based
clustering algorithm. Six such clusters are displayed in the third picture of Figure 29 in different colors.
These clusters then undergo several iterations of combining and subdividing so that the resulting clusters
are not too close to each other and the members in each cluster are not too far apart. This refinement is
necessary since close-by clusters could be a convoy that is split into parts by the clustering algorithm, and
far-apart members in a cluster could be unrelated detections. To ensure that a convoy candidate cluster
contains multiple detections and has an oblong shape, the number of detections in the cluster, the
consistency of the speed value and heading of the detections, and the positions of the detections relative to
each other are also examined. The final result of this process is illustrated in the fourth picture.

Once the convoy candidates are identified, each one of them is assigned a persistence score of value
0. In the following, the group motion of each candidate cluster is characterized and used to increase the
candidate’s persistence score by correlating the candidate with the ones found in subsequent scans.
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Figure 29, Identify convoy candidates by clustering GMTI data. The gray lines form a road intersection. 1) Raw
GMTI detections. 2) Isolated detections are removed. 3) Six clusters are found initially. 4) One qualified convoy
candidare cluster remains after refinement. The shape of the clusters, the distunce benween the clusters, and the

consistency of the detections in each cluster are examined in the process.

4.2 MOTION MODEL

To predict the positions of the candidate clusters 1 the next GMTI scan, a molion model 13
generated ftor each cluster. This process is illustrated in Figure 30.

A convoy candidate cluster contains detections that are closely aligned and have similar speed and
heading. In GMTI data, the reported speed for a detected target 1s the sensor reading of the actual speed
along the radar range direction. To predict the position of the cluster in the next scan, the detected cluster
speed at the range direction, Vi, needs to be projected back to the direction of the actual cluster heading.
Denote this projected speed as V. When the quality of the detected speed values in the cluster is
reasonably good, Vi 1s estimated as the median speed of the detections. Otherwise, it is estimated as the
average of the detected speed values in the cluster.
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Radar Range Direction

Figure 30. Convov motion model. The apparent cluster speed Vi along the radar range divection is back-projected

to the estimated cluster heading divection (blue line) to estimate the cluster speed V

The actual headings of the GMTI detections are unknown. In this work, the heading of a convoy
candidate cluster is estimated by fitting a line to the detections in the cluster using least square regression.
The apparent cluster speed Vg along the radar range direction is then back-projected to the fitted line to
estimate the actual cluster speed V.

4.3 CONVOY CANDIDATE CORRELATION BETWEEN TWO GMTI SCANS

Once the speed and the heading of convoy candidate clusters in a GMTI scan are estimated, the
positions of the clusters in the next scan can be predicted by using these estimates and the elapsed time
between the two scans. After a new set of convoy candidates are found in the new scan, the “predicted
positions”™ of the existing candidates are correlated to the “‘new positions” of the new candidate by
calculating their Euclidean distances. This process is shown in Figure 31. The candidate cluster from the
new scan is shown in the figure in brilliant colors, and the one carried over from the previous scan is in
faded colors.

A strong correlation, 1.e., a small Euclidean distance, between a new and an old candidate is
considered evidence that the candidates are associated with the same actual convoy. The persistence score
of the corresponding candidates increases when such evidence exists.
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Figure 31 Correlating convoy candidate clusiers. The candidate cluster from the new GMTI scan is shown in
brilliant colors. and the one carrvied over from the previous scan is in faded color The position of the candidate
from the previous scan is predicted in the new scan. Euclidean distance between the “predicted position ™ of the old

candidate and the “new position” of the new candidate is used 10 correlate the candidates.

4.4 EVIDENCE EVALUATION

After the candidate cluster correlation, the persistence score of all the candidates is evaluated
against a threshold that is determined heuristically. Candidates with scores higher than the threshold are
declared convoys and become the output of the Convoy Detection Module. For the rest of the candidates,
their score history is examined. A candidate is dismissed if its persistence score has not increased in a
certain number of scans in the past. The module then moves on to the next GMTI scan.

The convoy detection algorithm presented in this section has been tested on operational GMT]1 data
with successtul results. Due to the classification of the data, the testing details will not be discussed in this
report. By presenting the convoy detection algorithm, however, we provide an example of building a
processing module that generates a feature with a very different nature from the vehicular volume feature
presented in Section 3.



5. ATEST BED FOR EVALUATING DETECTION AND REASONING
ALGORITHMS

In this section, we present a test bed for testing and evaluating the processing modules. As
mentioned previously, a variety of statistical modeling, pattern recognition, machine learning, and data
mining algorithms can be implemented in the processing modules. During development, various levels of
testing are necessary for algorithm modification, parameter adjustment, and performance evaluation.
Since the processing modules in this work share a common functional structure, we are able to build a
generalized testing system that allows easy change of input, output, and algorithm plug-ins. It also
provides access to internal parameter values, which is crucial for testing sophisticated algorithms.

The purpose of this section is to describe the structure of the test bed and to show its capability in
performing testing of processing modules. The Vehicular Volume and the Convoy Detection modules
developed in Sections 3 and 4 both contain one low-level feature. The system tested in this section is
more sophisticated: it uses real-time simulated traffic as input, calculates two sets of low-level features,
and then uses these features to learn about the normal traffic pattern at a road intersection by applying a
machine learning algorithm. When an unusual traffic pattern emerges, the system flags the operator to
report the anomaly in real time.

Figure 32 shows the top-level diagram of the system. Three vehicle sources release vehicles onto a
forked section of two-lane roads. Using data collected by the “tripwire™ and the “bounding box™ sensors,
the system compules features for the “detector”™ to detect anomalies. The detector first learns about the
normal trattic patterns from a set of training data. It then examines the incoming data values in real time
to detect abnormal patterns. Through a graphical user interface, a human user can manipulate the
parameter settings of the vehicle sources, dictate the learning process, and monitor the input, the output,
and the internal parameters of the detector.

It should be emphasized that this test bed is designed to be flexible to accommodate a variety of
configurations of multilevel hierarchical modules. In our example system, computational features are
extracted by the tripwire and the bounding box modules for anomaly detection. When necessary, these
features can be replaced or more features can be added. In Figure 32, a “convoy detector™ is shown as an
example of additional features. To test the system under different input conditions, modules can also be
included to transform the source vehicle information. For instance, in the case of SBR, the vehicle source
can be transformed into GMTI detections.

The following subsections describe the components of the test bed.
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Figure 32. Top-level diagram for real-time anomualy detection in simulated traffic.

5.1 VEHICLE SOURCES

The speeds of the vehicles released by the vehicle sources have Gaussian distributions. The time
intervals between two vehicles released at the same source obey Poisson distributions. Faster vehicles can
pass the slower ones. Vehicles approaching the intersection choose a direction randomly to proceed, and
the choices are uniformly distributed.

5.2 SENSORS

“Tripwire” sensors provide the vehicle heading and volume, as well as the minimum, maximum,
and average speed of the vehicles that pass through the tripwire. A “bounding box™ encloses an area with
traffic activities. It counts the number of vehicles inside the area as well as the ones that cross the borders.
Bounding boxes also provide the overall heading and the minimum, maximum, and average speed of the
vehicles that are counted. All data are collected every 30 seconds. The different types of data values
generated by the sensors are aggregated into vector form and used subsequently as input feature vectors to
the detector. The flavor of these feature vectors is consistent with what can be computed from the GMTI
data.



53 DETECTOR

Data provided by the tripwires and the bounding boxes are used as input to the ““detector.” The core
of the detector is a neural network-based classifier called simplified fuzzy ARTMAP (SFAM). Figure 33
illustrates the structure and the learning scheme of SFAM. The neural network learns about the “normal™
and the “abnormal® traffic patterns from a set of training data, which are the feature vectors generated by
the sensors. In Figure 33, these training veclors are depicted as the green (‘‘normal™) and the red
(“abnormal™) points in the multidimensional feature space. When the features are chosen properly. points
with the same color tend to form clusters. The SFAM identifies the clusters and builds hypercubes around
them. Each hypercube is associated with either the “normal™ or the “abnormal™ output class. Given a new
feature vector, the classifier evaluates the proximity of the vector to the hypercubes and assigns it to the

class that the closest cube belongs to.
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Figure 33. The structure and the learning scheme of simplified fuzzy ARTMAP classifier.

54 USERINTERFACE

A graphical user interface, shown in Figure 34, allows a user to change the settings of the vehicle
sources and control the learning process. Through the interface, the user can also observe the traffic flow,
monitor the system output, and examine the internal parameter values such as the feature vectors and the
weights of the neural network.
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& Cac } /
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shows the internal parameters such as the feanre vector values and the status of the wraffic (normal or abnormal).

The middle-left panel is the control for SFAM.

55 SOFTWARE ARCHITECTURE

The software design of the test bed is shown in Figure 35. [t has a “publish-subscribe™ software
architecture. A centralized communication manager supports broadcast communications.

Since data transfer among different parts of the system is mediated by the communication manager,
it is easy to swap components 1 and out of the system. For instance, if a “convoy detector™ needs to be
added as a new feature or some new detectors become available, they can be easily plugged into the
system. These new additions are illustrated in red in Figure 35.
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6. SUMMARY

Traditional target tracking may not be the best method to exploit GMTI data for large area
persistent surveillance. In this work, we consider the approach that uses the GMTI data as moving spots
on the ground to estimate the level of activities in an area.

A computational framework is proposed for data processing and inference. This framework has a
bottom-up, hierarchical, and modular structure where sensor data provide input to the system at the
bottom level. The system design emphasizes on evidence accumulation and continuous learning. Various
pattern recognition, machine learning, and data mining algorithms can be implemented in the processing
modules of the system. The modules at different levels share a common functional structure: after
preprocessing, computational features are extracted for model building and reasoning; the results are then
passed to the modules at the next level up. This computational design ensures that the system is easily
extendable and can be tested using a generalized test bed.

Traffic data from the ADMS Virginia database were used as a surrogate of GMTI data. We explain
in detail how low-level features are constructed from the traffic data and used as indicators to the activity
level at Norfolk Naval Base. A convoy detection algorithm for exploiting GMTI data is also described.

A test bed was built for evaluating detection and reasoning algorithms. It allows easy change of
input, output, and algorithm plug-ins as well as access to internal parameters.

39



F A d
REPORT DOCUMENTATION PAGE OME Be. T TEE

Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources. gathering and maintaining the
data needed and completing and reviewing this caliection of information  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188). 1215 Jefferson Davis Highway Sunte 1204 Arslington. VA 22202-
4302 Respondents should be aware that notwithstanding any cther provision of law no person shall be subject to any penalty for failing to comply with a coliection of information if it does not display a currently
valid OMB conirol number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
02-10-2004 Technical Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
FA8721-05-C-0002
Activity Level Change Detection for Persistent Surveillance 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
1204
Fang Liu and Lawrence Bush 5e. TASK NUMBER
500

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

MIT Lincoln Laboratory
244 Wood Street TR-1104
Lexington, MA 02420-9108

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

AT Space and Missile Systems Center/YS

2420 Vela Way., Suite 1467-A8 11. SPONSOR/MONITOR’S REPORT
El Scgundo. CA 90245 NUMBER(S)

ESC-TR-2005-0061

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A new approach to GMTI data exploitation for large arca persistent surveillance is presented.  Instead of traditional target tracking. this
approach utilizes GMTI data as moving spots on the ground to estimate the level of activities and detect unusual activitics such as military
deployments. - A multilayer hicrarchical cxploitation scheme is proposed. This computational framework has clean interfaces between
layers consisting of multiple processing modules. Various data processing, machine lcarning, and rcasoning algorithms can be implemented
in these modules. This system s casily extendable and can be tested using a gencralized test bed. The development of two processing
modules. vehicular volume and convoy detector, is described. For the vehicular volume module, US highway data were used as a surrogate
ot long-term GMTI surveillance data. The relationship between the activity level of Norfolk Naval Base and the traffic pattern on a road
leading to the Base is studied. The convoy detection module. developed using real GMTI data, contains an algorithm that detects convoys
without explicit target tracking. An end-to-end testing facility was also developed. Using this test bed. the system can be tested at different
levels: as an individual processing module, as multiple cooperating processing modules across layers, or as the entire system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
Unclassitied Unclassificd Unclassified None 50 code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18




